Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Immunol ; 15: 1347259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318168

RESUMO

Introduction: Eosinophilic esophagitis (EoE) is a chronic, inflammatory, antigen-driven disease of the esophagus. Tissue EoE pathology has previously been extensively characterized by novel transcriptomics and proteomic platforms, however the majority of surface marker determination and screening has been performed in blood due to mucosal tissue size limitations. While eosinophils, CD4+ T cells, mast cells and natural killer (NK) T cells were previously investigated in the context of EoE, an accurate picture of the composition of peripheral blood mononuclear cells (PBMC) and their activation is missing. Methods: In this study, we aimed to comprehensively analyze the composition of peripheral blood mononuclear cells and their activation using surface marker measurements with multicolor flow cytometry simultaneously in both blood and mucosal tissue of patients with active EoE, inactive EoE, patients with gastroesophageal reflux disease (GERD) and controls. Moreover, we set out to validate our data in co-cultures of PBMC with human primary esophageal epithelial cells and in a novel inducible mouse model of eosinophilic esophagitis, characterized by extensive IL-33 secretion in the esophagus. Results: Our results indicate that specific PBMC populations are enriched, and that they alter their surface expression of activation markers in mucosal tissue of active EoE. In particular, we observed upregulation of the immunomodulatory molecule CD38 on CD4+ T cells and on myeloid cells in biopsies of active EoE. Moreover, we observed significant upregulation of PD-1 on CD4+ and myeloid cells, which was even more prominent after corticosteroid treatment. With co-culture experiments we could demonstrate that direct cell contact is needed for PD-1 upregulation on CD4+ T cells. Finally, we validated our findings of PD-1 and CD38 upregulation in an inducible mouse model of EoE. Discussion: Herein we show significant alterations in the PBMC activation profile of patients with active EoE in comparison to inactive EoE, GERD and controls, which could have potential implications for treatment. To our knowledge, this study is the first of its kind expanding the multi-color flow cytometry approach in different patient groups using in vitro and in vivo translational models.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Refluxo Gastroesofágico , Animais , Camundongos , Humanos , Esofagite Eosinofílica/diagnóstico , Leucócitos Mononucleares/metabolismo , Receptor de Morte Celular Programada 1 , Proteômica , Mucosa/metabolismo , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/patologia
2.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254785

RESUMO

The tumor microenvironment (TME) is pivotal in cancer progression and the response to immunotherapy. A "hot" tumor typically contains immune cells that promote anti-tumor immunity, predicting positive prognosis. "Cold" tumors lack immune cells, suggesting a poor outlook across various cancers. Recent research has focused on converting "cold" tumors into "hot" tumors to enhance the success of immunotherapy. A prerequisite for the studies of the TME is an accurate knowledge of the cell populations of the TME. This study aimed to describe the immune TME of lung and colorectal cancer and melanoma, focusing on lymphoid and myeloid cell populations. We induced heterotopic immunocompetent tumors in C57BL/6 mice, using KP and LLC (Lewis lung carcinoma) cells for lung cancer, MC38 cells for colorectal cancer, and B16-F10 cells for melanoma. Immune cell infiltration was analyzed using multicolor flow cytometry in single-cell suspensions after tumor excision. KP cell tumors showed an abundance of neutrophils and eosinophils; however, they contained much less adaptive immune cells, while LLC cell tumors predominated in monocytes, neutrophils, and monocyte-derived dendritic cells. Monocytes and neutrophils, along with a significant T cell infiltration, were prevalent in MC38 tumors. Lastly, B16-F10 tumors were enriched in macrophages, while showing only moderate T cell presence. In conclusion, our data provide a detailed overview of the immune TME of various heterotopic tumors, highlighting the variabilities in the immune cell profiles of different tumor entities. Our data may be a helpful basis when investigating new immunotherapies, and thus, this report serves as a helpful tool for preclinical immunotherapy research design.

3.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136314

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, has been associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). However, its role in tumorigenesis remains poorly understood. This work aimed to explore the impact of DDR1 expression on immune cell infiltration in lung adenocarcinoma. Pharmacological inhibition and knockout of DDR1 were used in an immunocompetent mouse model of KRAS/p53-driven lung adenocarcinoma (LUAD). Tumor cells were engrafted subcutaneously, after which tumors were harvested for investigation of immune cell composition via flow cytometry. The Cancer Genome Atlas (TCGA) cohort was used to perform gene expression analysis of 509 patients with LUAD. Pharmacological inhibition and knockout of DDR1 increased the tumor burden, with DDR1 knockout tumors showing a decrease in CD8+ cytotoxic T cells and an increase in CD4+ helper T cells and regulatory T cells. TCGA analysis revealed that low-DDR1-expressing tumors showed higher FoxP3 (regulatory T-cell marker) expression than high-DDR1-expressing tumors. Our study showed that under certain conditions, the inhibition of DDR1, a potential therapeutic target in cancer treatment, might have negative effects, such as inducing a pro-tumorigenic tumor microenvironment. As such, further investigations are necessary.

4.
Antioxidants (Basel) ; 12(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001862

RESUMO

COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37573716

RESUMO

We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.


Assuntos
Monoacilglicerol Lipases , Neoplasias , Camundongos , Animais , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Microambiente Tumoral , Ácidos Graxos , Camundongos Endogâmicos C57BL
6.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627581

RESUMO

Myeloperoxidase (MPO) is a neutrophil-derived enzyme that has been recently associated with tumour development. However, the mechanisms by which this enzyme exerts its functions remain unclear. In this study, we investigated whether myeloperoxidase can alter the function of A549 human lung cancer cells. We observed that MPO promoted the proliferation of cancer cells and inhibited their apoptosis. Additionally, it increased the phosphorylation of AKT and ERK. MPO was rapidly bound to and internalized by A549 cells, retaining its enzymatic activity. Furthermore, MPO partially translocated into the nucleus and was detected in the chromatin-enriched fraction. Effects of MPO on cancer cell function could be reduced when MPO uptake was blocked with heparin or upon inhibition of the enzymatic activity with the MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH). Lastly, we have shown that tumour-bearing mice treated with 4-ABAH had reduced tumour burden when compared to control mice. Our results highlight the role of MPO as a neutrophil-derived enzyme that can alter the function of lung cancer cells.

8.
Cell Rep ; 42(1): 111977, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640334

RESUMO

During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.


Assuntos
Decídua , Trofoblastos , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez/fisiologia , Decídua/metabolismo , Trofoblastos/metabolismo , Fenótipo , Macrófagos/metabolismo
9.
RNA Biol ; 19(1): 1305-1315, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469564

RESUMO

The microRNA-200 family has wide-ranging regulatory functions in cancer development and progression. Above all, it is strongly associated with the epithelial-to-mesenchymal transition (EMT), a process during which cells change their epithelial to a mesenchymal phenotype and acquire invasive characteristics. More recently, miR-200 family members have also been reported to impact the immune evasion of cancer cells by regulating the expression of immunoinhibitory immune checkpoints (ICs) like PD-L1. Therefore, we aimed to comprehensively characterize this miR-200 family as a regulatory interface between EMT and immune evasion mechanisms in biliary tract cancer. Initial correlation analyses and transient overexpression experiments using miRNA mimics suggested miR-200c-3p as a putative regulator of ICs including PD-L1, LGALS9, and IDO1. However, these effects could not be confirmed in stable miR-200c-3p overexpression cell lines, nor in cells transiently transfected with miR-200c-3p mimic from an independent manufacturer. By shifting our efforts towards dissecting the mechanisms leading to these disparate effects, we observed that the initially used miR-200c-3p mimic triggered a double-stranded (ds)RNA-dependent antiviral response. Besides upregulating the ICs, this had substantial cellular consequences including an induction of interferon type I and type III expression, increased levels of intracellular dsRNA sensors, and a significantly altered cellular growth and apoptotic activity.Our study highlights the capability of miRNA mimics to non-specifically induce a dsRNA-mediated antiviral interferon response. Consequently, phenotypic alterations crucially distort physiological miRNA functions and might result in a major misinterpretation of previous and future miRNA studies, especially in the context of IC regulation.


Assuntos
MicroRNAs , MicroRNAs/metabolismo , Interferons/genética , Interferons/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Antivirais/farmacologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
10.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377658

RESUMO

Myeloid lineage cells suppress T cell viability through arginine depletion via arginase 1 (ARG1). Despite numerous studies exploring the mechanisms by which ARG1 perturbs lymphocyte function, the cellular populations responsible for its generation and release remain poorly understood. Here, we showed that neutrophil lineage cells and not monocytes or macrophages expressed ARG1 in human non-small cell lung cancer (NSCLC). Importantly, we showed that approximately 40% of tumor-associated neutrophils (TANs) actively transcribed ARG1 mRNA. To determine the mechanism by which ARG1 mRNA is induced in TANs, we utilized FPLC followed by MS/MS to screen tumor-derived factors capable of inducing ARG1 mRNA expression in neutrophils. These studies identified ANXA2 as the major driver of ARG1 mRNA expression in TANs. Mechanistically, ANXA2 signaled through the TLR2/MYD88 axis in neutrophils to induce ARG1 mRNA expression. The current study describes what we believe to be a novel mechanism by which ARG1 mRNA expression is regulated in neutrophils in cancer and highlights the central role that neutrophil lineage cells play in the suppression of tumor-infiltrating lymphocytes.


Assuntos
Anexina A2 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Anexina A2/genética , Arginase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , RNA Mensageiro , Espectrometria de Massas em Tandem , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293139

RESUMO

Advanced maternal age and obesity are the main risk factors to develop gestational diabetes mellitus (GDM). Obesity is a consequence of the increased storage of triacylglycerol (TG). Cytosolic and lysosomal lipid hydrolases break down TG and cholesteryl esters (CE) to release fatty acids (FA), free cholesterol, and glycerol. We have recently shown that intracellular lipases are present and active in the mouse placenta and that deficiency of lysosomal acid lipase alters placental and fetal lipid homeostasis. To date, intracellular lipid hydrolysis in GDM has been poorly studied despite the important role of FA in this condition. Therefore, we hypothesized that intracellular lipases are dysregulated in pregnancies complicated by maternal high-fat/high-cholesterol (HF/HCD) feeding with and without GDM. Placentae of HF/HCD-fed mice with and without GDM were more efficient, indicating increased nutrient transfer to the fetus. The increased activity of placental CE but not TG hydrolases in placentae of dams fed HF/HCD with or without GDM resulted in upregulated cholesterol export to the fetus and placental TG accumulation. Our results indicate that HF/HCD-induced dysregulation of placental lipid hydrolysis contributes to fetal hepatic lipid accumulation and possibly to fetal overgrowth, at least in mice.


Assuntos
Diabetes Gestacional , Humanos , Gravidez , Feminino , Camundongos , Animais , Placenta , Esterol Esterase , Hidrólise , Ésteres do Colesterol , Glicerol , Macrossomia Fetal , Obesidade/complicações , Ácidos Graxos , Triglicerídeos , Lipase
12.
Front Immunol ; 13: 840207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432362

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have revolutionized systemic anti-tumor treatments across different types of cancer. Nevertheless, predictive biomarkers regarding treatment response are not routinely established yet. Apart from T-lymphocytes, the humoral immunity of B-lymphocytes is studied to a substantially lesser extent in the respective setting. Thus, the aim of this study was to evaluate peripheral blood B-cell subtypes as potential predictors of ICI treatment response. Methods: Thirty-nine cancer patients receiving ICI therapy were included into this prospective single-center cohort study. All had a first blood draw at the date before treatment initiation and a second at the time of first response evaluation (after 8-12 weeks). Seven different B-cell subtypes were quantified by fluorescence-activated cell sorting (FACS). Disease control- (DCR) and objective response rate (ORR) were co-primary study endpoints. Results: Overall, DCR was 48.7% and ORR was 25.6%, respectively. At baseline, there was no significant association of any B-cell subtype with neither DCR nor ORR. At the first response evaluation, an increase in the frequency of CD21- B-cells was a statistically significant negative predictor of response, both regarding DCR (OR=0.05, 95%CI=0.00-0.67, p=0.024) and ORR (OR=0.09, 95%CI=0.01-0.96, p=0.046). An increase of the frequency of switched memory B-cells was significantly associated with reduced odds for DCR (OR=0.06, 95%CI=0.01-0.70, p=0.025). Patients with an increased frequency of naïve B-cells were more likely to benefit from ICI therapy as indicated by an improved DCR (OR=12.31, 95%CI=1.13-134.22, p=0.039). Conclusion: In this study, certain B-cell subpopulations were associated with ICI treatment response in various human cancer types.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Linfócitos B , Estudos de Coortes , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Intervalo Livre de Progressão , Estudos Prospectivos
13.
Antioxidants (Basel) ; 11(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326206

RESUMO

Atherosclerosis is a disease of increased oxidative stress characterized by protein and lipid modifications in the vessel wall. One important oxidative pathway involves reactive intermediates generated by myeloperoxidase (MPO), an enzyme present mainly in neutrophils and monocytes. Tandem MS analysis identified MPO as a component of lesion derived high-density lipoprotein (HDL), showing that the two interact in the arterial wall. MPO modifies apolipoprotein A1 (apoA-I), paraoxonase 1 and certain HDL-associated phospholipids in human atheroma. HDL isolated from atherosclerotic plaques depicts extensive MPO mediated posttranslational modifications, including oxidation of tryptophan, tyrosine and methionine residues, and carbamylation of lysine residues. In addition, HDL associated plasmalogens are targeted by MPO, generating 2-chlorohexadecanal, a pro-inflammatory and endothelial barrier disrupting lipid that suppresses endothelial nitric oxide formation. Lesion derived HDL is predominantly lipid-depleted and cross-linked and exhibits a nearly 90% reduction in lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity. Here we provide a current update of the pathophysiological consequences of MPO-induced changes in the structure and function of HDL and discuss possible therapeutic implications and options. Preclinical studies with a fully functional apoA-I variant with pronounced resistance to oxidative inactivation by MPO-generated oxidants are currently ongoing. Understanding the relationships between pathophysiological processes that affect the molecular composition and function of HDL and associated diseases is central to the future use of HDL in diagnostics, therapy, and ultimately disease management.

14.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328639

RESUMO

Neutrophils are immune cells with reported phenotypic and functional plasticity. Tumor-associated neutrophils display many roles during cancer progression. Several tumor microenvironment (TME)-derived factors orchestrate neutrophil release from the bone marrow, recruitment and functional polarization, while simultaneously neutrophils are active stimulators of the TME by secreting factors that affect immune interactions and subsequently tumor progression. Successful immunotherapies for many cancer types and stages depend on the targeting of tumor-infiltrating lymphocytes. Neutrophils impact the success of immunotherapies, such as immune checkpoint blockade therapies, by displaying lymphocyte suppressive properties. The identification and characterization of distinct neutrophil subpopulations or polarization states with pro- and antitumor phenotypes and the identification of the major TME-derived factors of neutrophil polarization would allow us to harness the full potential of neutrophils as complementary targets in anticancer precision therapies.


Assuntos
Neoplasias , Neutrófilos , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/patologia , Neoplasias/patologia , Microambiente Tumoral
15.
Cancer Med ; 11(16): 3074-3083, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297215

RESUMO

BACKGROUND: The presence of autoantibodies in the serum of cancer patients has been associated with immune-checkpoint inhibitor (ICI) therapy response and immune-related adverse events (irAEs). A prospective evaluation of different autoantibodies in different cancer entities is missing. MATERIALS AND METHODS: In this prospective cohort study, we included a pan-cancer cohort of patients undergoing ICI treatment and measured a comprehensive panel of autoantibodies at treatment start and at the time point of first response evaluation. The presence and induction of autoantibodies (ANA, ENA, myositis, hepatopathy, rheumatoid arthritis) in different cancer entities were assessed and the association between autoantibodies and disease control rate (DCR), objective response rate (ORR), and progression-free survival (PFS), as well as the development of grade 3 or higher irAEs were evaluated by logistic regression models, cox proportional hazard models, and Kaplan-Meier estimators. RESULTS: Of 44 patients with various cancer entities, neither the presence of any positive autoantibody measurement nor the presence of positive antinuclear antibodies (ANA) [≥1:80] at baseline was associated with the examined clinical endpoints (DCR, ORR, PFS) in univariable and multivariable analyses. After 8-12 weeks of ICI treatment, DCR, ORR, and PFS did not significantly differ between patients with and without any positive autoantibody measurement or positive ANA titers. The frequency of irAEs did not differ depending on autoantibody status of the patients. CONCLUSION: Autoantibodies at treatment initiation or induction after 8-12 weeks of ICI treatment are not associated with treatment efficacy as indicated by DCR, ORR, and PFS or higher grade irAEs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Autoanticorpos , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Estudos Prospectivos
16.
Stem Cell Res ; 60: 102671, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093718

RESUMO

Regeneration of the endometrial stromal compartment in premenopausal women is likely maintained by the perivascular endometrial mesenchymal stem/stromal cells (eMSC) expressing sushi domain containing 2 (SUSD2). The fate of SUSD2+ eMSC during pregnancy and their role in decidualization is not fully known. The aim of our study was to determine the effect of progesterone on the stemness of the SUSD2+ eMSC isolated from non-pregnant uterine samples. Secondary objectives were to characterize the functional capacity including differentiation and clonogenicity assays of SUSD2+ eMSC isolated from decidua at full term and compare it to the capacity of those isolated from non-pregnant uterine samples. Progesterone treatment induced changes in the decidual gene expression profile in non-pregnant SUSD2+ eMSC. Data analysis of a publicly available single cell RNA-seq data set revealed differential expression of several mesenchymal and epithelial signature genes between the SUSD2+ eMSC and the decidual stromal cells, suggesting mesenchymal-to-epithelial transition occurs during decidualization. Histological analysis revealed a significantly lower abundance of SUSD2+ eMSC in 1st trimester and full term samples compared to non-pregnant samples, p = 0.0296 and 0.005, respectively. The differentiation and the colony forming capacity did not differ significantly between the cells isolated from non-pregnant and pregnant uterine samples. Our results suggest that SUSD2+ eMSC undergo decidualization in vitro, while maintaining MSC plasma membrane phenotype. Human eMSC seem to play an important role in the course of endometrial decidualization and embryo implantation. Pregnancy reduced the abundance of SUSD2+ eMSC, however eMSC function remains intact.


Assuntos
Células-Tronco Mesenquimais , Progesterona , Diferenciação Celular , Endométrio/metabolismo , Feminino , Humanos , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Células Estromais
17.
Front Immunol ; 13: 997115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700219

RESUMO

Cannabinoid (CB) receptors (CB1 and CB2) are expressed on cancer cells and their expression influences carcinogenesis in various tumor entities. Cells of the tumor microenvironment (TME) also express CB receptors, however, their role in tumor development is still unclear. We, therefore, investigated the role of TME-derived CB1 and CB2 receptors in a model of non-small cell lung cancer (NSCLC). Leukocytes in the TME of mouse and human NSCLC express CB receptors, with CB2 showing higher expression than CB1. In the tumor model, using CB1- (CB1 -/-) and CB2-knockout (CB2 -/-) mice, only deficiency of CB2, but not of CB1, resulted in reduction of tumor burden vs. wild type (WT) littermates. This was accompanied by increased accumulation and tumoricidal activity of CD8+ T and natural killer cells, as well as increased expression of programmed death-1 (PD-1) and its ligand on lymphoid and myeloid cells, respectively. CB2 -/- mice responded significantly better to anti-PD-1 therapy than WT mice. The treatment further increased infiltration of cytotoxic lymphocytes into the TME of CB2 -/- mice. Our findings demonstrate that TME-derived CB2 dictates the immune cell recruitment into tumors and the responsiveness to anti-PD-1 therapy in a model of NSCLC. CB2 could serve as an adjuvant target for immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor CB2 de Canabinoide , Animais , Humanos , Camundongos , Carcinogênese , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Microambiente Tumoral , Camundongos Knockout , Receptor CB2 de Canabinoide/genética
18.
Pharmacol Ther ; 236: 108052, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34890688

RESUMO

Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.


Assuntos
Neoplasias , Peroxidase , Humanos , Inflamação/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neutrófilos , Oxidantes/metabolismo , Peroxidase/metabolismo , Microambiente Tumoral
19.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948104

RESUMO

The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.


Assuntos
Imunidade Celular , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Humanos , Imunoterapia , Metástase Neoplásica , Neoplasias/terapia
20.
Front Immunol ; 12: 756042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804042

RESUMO

T-lymphocytes (T cells) play a major role in adaptive immunity and current immune checkpoint inhibitor-based cancer treatments. The regulation of their function is complex, and in addition to cytokines, receptors and transcription factors, several non-coding RNAs (ncRNAs) have been shown to affect differentiation and function of T cells. Among these non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160, NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs (lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272, hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell apoptosis, differentiation and secretion of cytokines. This review summarizes the latest news and regulatory roles of these ncRNAs on the function of T cells, with widespread implications on the pathophysiology of autoimmune disorders and cancer.


Assuntos
RNA não Traduzido/imunologia , Linfócitos T/imunologia , Animais , Doenças Autoimunes/imunologia , Humanos , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...